
RBDMS Data Mining Configuration
version 2.0

and
Virtual Engineering Solutions, Inc.

www.VirtualES.com

RBDMS Data Mining Configuration
Page 2 of 44

Table of Contents

Introduction ..4
Web Map Service (WMS) Configuration (Geoserver)6

Layer configuration ...6
Style configuration..6
Tile caching ..6
GeoServer services..7

GIS configuration file..8
Specifying the map service ..8
Specifying the layers ...8
GIS tools ..9
Print options ...9

Configuring printing ... 11
The print config file .. 11

Search configuration .. 13
ASP.NET Web API controllers and models .. 15

Routing and controllers in ASP.NET Web API...................................... 15
Full text (simple) search routing... 16
Advanced search routing .. 17

Models in ASP.NET Web API.. 17
Controllers and Models implemented in DataMining 2.0 17

CountyController ... 18
EntityController .. 18
FieldController.. 18
FilterController ... 19
GISConfigController .. 19
LookupController ... 20
PermitController ... 20
PoolController .. 20
ReportTreeProviderController.. 21
ReportProviderController ... 21
WellController .. 22

Map Configuration and spatial queries ... 23
Map Configuration .. 23
The map legend /TOC.. 23
Spatial queries and OpenLayers controls .. 25

Displaying the results of a spatial query .. 25
Point selection tool .. 26
Rectangle selection tool... 26
Polygon selection tool ... 26
Tooltip selection ... 26
InfoClick selection tool .. 27

Reporting configuration... 28
Detail Configuration... 31

RBDMS Data Mining Configuration
Page 3 of 44

RBDMSWebGIS Configuration ... 32
Appendix I: Styled Layer Descriptor (SLD) example 33
Appendix II: Details Samples ... 36
Appendix III. Using a WCF for Some or All Data Access 39

Full Text Search Example.. 39
Details Example ... 40
Data Mining WCF Service Contract ... 42
Coding the WCF Service.. 43

RBDMS Data Mining Configuration
Page 4 of 44

Introduction

RBDMS Data Mining 2.0 provides users the ability to search, review, and
visualize RBDMS data via a Web browser. With the 2.0 version of RBDMS Data
Mining, the architecture is completely redesigned by utilizing the latest
technologies to provide the desired functionality. The application also relies on
specific implementations of several base RBDMS.NET projects, like RbdmsBase,
RbdmsConfig, RbdmsWebBase and RbdmsWebControls.

RBDMS Data Mining is a presentation layer written in HTML/JavaScript and
ASP.NET WEB API. The server side logic is implemented by a set of
controllers/models which provide the results in JSON/xml to the JavaScript
client.

The map rendering functionality on the client side is implemented by using the
high-performance and feature rich OpenLayers JS library, while the map data is
served by an OGC compliant server (GeoServer 2.4.4 is used in our test
environment) The server must provide OGC compliant implementation of a
number of open standards such as Web Feature Service (WFS), Web Map Service
(WMS), and Web Coverage Service (WCS).

RBDMS Data Mining 2.0 provides the option to export the configured map in
print documents which is implemented by using the MapFish print services. The
print server is installed along with GeoServer and use the same java
environment at the server side.

The reporting option of RBDMS Data Mining 2.0 is provided by a set of RDLC and
XML based reports in an intuitive user interface powered by the jQuery UI. To
specify the query criteria, we use the same filtering methodology as in the
advanced search tab, which is also the same filter methodology used by
RBDMS.Net. There are no required changes to filter collections or reports (XML
or RDLC).

In RBDMS Data Mining 2.0 the full text (simple) and advanced search has been
redesigned which is no longer based on Nodes.xml, instead we use pre-
configured javascript variables (searchNodes and searchNodesAdvanced) to
initiate the query from the client side and interact with the controllers and the
models to complete a search.

The implementation of the application is divided into common and state
specific parts. Regarding to the application configuration, we continue to use
the state specific map config file (GWPC_MS.xml in our test environment) with
a couple of minor changes described later in this document.

RBDMS Data Mining Configuration
Page 5 of 44

The remainder of this document discusses the applied technologies in more
detail and describes the file structure, contents of the configuration files, and
other requirements for their use.

RBDMS Data Mining Configuration
Page 6 of 44

Web Map Service (WMS) Configuration (Geoserver)

With RBDMS Data Mining 2.0 we use a GeoServer backend to provide web
mapping data for the application. GeoServer is installed as a service
application which starts with the OS automatically. We usually configure
GeoServer to listen on port 8080, and we should also configure the firewall
settings to allow propagating the request to this specific port. Once the
Geoserver installation is complete we can enter to the admin page using this
url on the server:

http://localhost:8080/geoserver/web

Layer configuration

When configuring the layers in GeoServer we should set up a data source first.
We can use either file based data sources (like shapefiles) or database stores
(like PostGIS or MS SQL Server). In the latter case the MS SQL driver extension
should also be installed with GeoServer.

When adding a new layer we should select a configured data source, specify
the common parameters NAME, SRS, EXTENT and configure the layer style by
selecting one of the preconfigured styles.

Style configuration

The layer styles can be specified by using an SLD (XML) definition. This
configuration provides the option to specify the style or symbols for the
features and specify the logical conditions when a specific style of symbol
should be applied. For an example see please refer to Appendix I: Styled Layer
Descriptor (SLD) example.

Tile caching

The tile caching option in GeoServer is provided by GeoWebCache which can be
installed with GeoServer (bundled mode) or in standalone mode. We configure
the layers to allow tile caching, which provides the option to store the
generated tiles in the file system and then serve the tile requests from this
cache when requested in a subsequent map rendering operation. This
configuration increases the rendering speed especially for the wells layer,
where the number of features is high. The tile cache for the layer can be

RBDMS Data Mining Configuration
Page 7 of 44

reseeded in the GeoServer admin page, which ensures that all the tiles for the
specified extent and zoom levels are pre-generated.
When the underlying data store is changing we need to regenerate/reseed the
cache manually or by using an automated script.

GeoServer services

GeoServer provides multiple OGC sevices which can be accessed by the
HTML/JS client

The web mapping service (WMS) providing map images can be accessed
according to the following example:

http://localhost:8080/geoserver/wms

The tile based WMS service (provided by GeoWebCache) can be accessed by:

http://localhost:8080/geoserver/gwc/service/wms

When doing spatial queries, we use web feature service (WFS) provided by
GeoServer using this URL:

http://localhost:8080/geoserver/wfs

The external URL-s to GeoServer should be set in the wmsURL and wfsURL
parameter of MSOGBOnline.html, in the OGCServer and OGCServerURL of
RBDMSGIS_HTML_OL.js and the WFS URL should also be specified in the pUrl
setting of proxyReverse.ashx

RBDMS Data Mining Configuration
Page 8 of 44

GIS configuration file

The structure on the GIS configuration (GWPC_MS.xml) file has remained, but a
couple of changes made to support the new OGC-based data store. The GIS
configuration is used for setting up the layers on the map, the GIS tools and the
mapping and printing defaults.

Specifying the map service

In the MapServices section for each MapService entry we need to specify the
service type (GS), the server (GeoServer base URL), the port number (8080),
the GeoServer workspace and the relative path to access the map service. If we
don't specify the workspace section in the MapService node we need to prefix
the layer names with the workspace (such as: MS_SHPS:Wells). In this case
multiple workspaces can be used in the same map configuration.

<MapService>
<ID>0</ID>
<ServiceType>GS</ServiceType>
<Server>http://csgeoserver.coordinatesolutions.com</Server>
<Port>8080</Port>
<Workspace>MS_SHPS</Workspace>
<MapService>/geoserver/gwc/service/wms/</MapService>

</MapService>

Specifying the layers

Layers are configured within the Toc section the mapservice is selected
according to the MapIndex entry of the Layer node. The ID of the layer
corresponds to the layer specified in GeoServer.

<Layer>
<Name>Wells</Name>
<MapIndex>0</MapIndex>
<ID>WELLS</ID>
<LayerType>MS</LayerType>
<EntityKeyName>PKEY</EntityKeyName>
<ToolTip>

<![CDATA[
<table>
<tr>

<td>API</td>
<td><a href="javascript:window.parent.parent.FillEDOnly('PKey',!-

PKEY-
!,'Integer','WellDetails.xml','ctl00_PageBody_WebPartManager1_gwpPanelD
etails_DetailsFrame');">!-API-!</td>

</tr>

RBDMS Data Mining Configuration
Page 9 of 44

</table>
]]>

</ToolTip>
</Layer>

The ToolTip section above is also used by the application, which specifies the
HTML content to be displayed on the map, when the cursor is dragged over a
feature. Currently only one ToolTip entry is taken into account.

GIS tools

The GIS tools can be specified in the TooBar section of the GIS config file to
determine which tools should be displayed with the map. The buttons are
powered by jQuery UI, and the image can be configured by CSS setting (in
styles/default.css) according to the following example:

.ui-icon-xy
{

background-image: url('../images/xy.png') !important;
}

The the css enty can be selected via the ImagePath attribute, like:

<GISTool>
<Name>CenterXY</Name>
<Title>Center by X,Y or Latitude, Longitude</Title>
<Type>CenterXY</Type>
<EventType>Dialog</EventType>
<ToolTip>Center by X,Y or Latitude, Longitude</ToolTip>
<ApplyTool>true</ApplyTool>
<ImagePath>ui-icon-xy</ImagePath>
<HTMLInputNames>

<string>longlat|+proj=longlat +ellps=GRS80 +no_defs</string>
<string>MSTM|+proj=tmerc +lat_0=32.500000 +lon_0=-89.750000

+x_0=500000.000000 +y_0=1300000.000000 +datum=NAD83 +ellps=GRS80
+no_defs</string>

</HTMLInputNames>
</GISTool>

Print options

When printing the map the print options are taken from the PrintOptions node
in the GIS config file. Not all of the print options can be specified externally
some of the settings should be added to the MapFish print configuration file.
Currently the following parameters used:

<PrintOption>
<PrintSize>8.5 X 11 Landscape</PrintSize>

RBDMS Data Mining Configuration
Page 10 of 44

<ImageHeight>437</ImageHeight>
<ImageWidth>678</ImageWidth>
<ImageOffsetX>57</ImageOffsetX>
<ImageOffsetY>570</ImageOffsetY>
<PDFTemplate>landscape.pdf</PDFTemplate>

</PrintOption>

RBDMS Data Mining Configuration
Page 11 of 44

Configuring printing

Printing is implemented by utilizing the MapFish print server. This server is
started along with GeoServer by adding the print module to the /webapps
section of the GeoServer installation. When the print server is properly
installed, we get the print test page in the browser by using the URL:

http://localhost:8080/print/

The external URL to the print server should be set in the printURL parameter of
MSOGBOnline.html.

The print config file

The print server is configured by the config yaml file in the webapps/print
directory of the GeoServer installation. In the print configuration file we can
specify the layouts for the printing.

Currently we use 2 layouts: a landscape and a portrait version. Each layouts
have 2 variants whether to print the legend or not in the print output.

An example of the portrait layout definition is shown below:

#===
8.5 X 11 Portrait:

#==
mainPage:

rotation: true
pageSize: LETTER
backgroundPdf: '${configDir}/${pdfTemplate}'
items:

- !map
spacingAfter: 0
width: '${imageWidth}'
height: '${imageHeight}'
absoluteX: '${imageOffsetX}'
absoluteY: '${imageOffsetY}'

- !columns
absoluteX: 45
absoluteY: 70
width: 200
items:

- !text
text: '${scaleText}'
fontSize: 8
spacingAfter: 0

- !columns
absoluteX: 45

RBDMS Data Mining Configuration
Page 12 of 44

absoluteY: 60
width: 200
items:

- !text
text: '${now MM/dd/yyyy}'
fontSize: 8
spacingAfter: 0

We can use template parameters in the layout which are specified in the post
request to the print server. These are those parameters which can be
configured in the GIS config file according to the previous chapter.

The date and the scale section in the print template is specified by using the
column sections. At the moment these sections cannot accept template
parameters, therefore the offset and the width of these sections should also be
configured in config.yaml instead of the GIS config file.

RBDMS Data Mining Configuration
Page 13 of 44

Search configuration

In DataMining 2.0 the search is no longer based on Nodes.xml, instead we use
search nodes. The search nodes are JavaScript configuration elements to
control the text based and the spatial based queries. We maintain different set
of nodes for the full text (simple) and the advanced search according to the
following declarations:

var searchNodes = {
entities: [

{
controller: "Well",
header: "Wells",
keyname: "PKey",
keytype: "Integer",
dispfield: "DispName",
detailxml: "WellDetails.xml",
container: {}

}, {
controller: "Entity",
header: "Oil and Gas Operators",
keyname: "PKey",
keytype: "Integer",
detailxml: "EntityDetails.xml",
container: {}

}, {
controller: "Pool",
header: "Pools",
keyname: "PoolNumber",
keytype: "Integer",
detailxml: "PoolDetails.xml",
container: {}

}, {
controller: "Field",
header: "Fields",
keyname: "FieldNumber",
keytype: "Integer",
detailxml: "FieldDetails.xml",
container: {}

}, {
controller: "County",
header: "Counties",
keyname: "CountyNo",
keytype: "Integer",
detailxml: "CountyDetails.xml",
container: {}

}, {
controller: "Permit",
header: "Permits",
keyname: "PKey",
keytype: "Integer",
detailxml: "PermitDetails.xml",
container: {}

}
]

}

RBDMS Data Mining Configuration
Page 14 of 44

var searchNodesAdvanced = {
entities: [

{
controller: "Well",
header: "Wells",
keyname: "PKey",
keytype: "Integer",
detailxml: "WellDetails.xml",
container: {}

}
]

}

Each node is mapped to a server side controller (by the controller parameter)
which is used to retrieve data for the corresponding search. We can specify
additional parameters for the search and for the ASP.NET page (ED.aspx) which
displays the result in the Details section of the user interface. For more
information about the search controllers see ASP.NET Web API controllers and
models.

RBDMS Data Mining Configuration
Page 15 of 44

ASP.NET Web API controllers and models

The server side of the DataMining 2.0 application is implemented by utilizing
the ASP.NET Web API technologies. ASP.NET Web API is a framework that
makes it easy to build HTTP services that reach a broad range of clients,
including browsers and mobile devices. ASP.NET Web API is an ideal platform
for building RESTful applications on the .NET Framework.

Routing and controllers in ASP.NET Web API

In ASP.NET Web API, a controller is a class that handles HTTP requests. The
public methods of the controller are called action methods or simply actions.
When the Web API framework receives a request, it routes the request to an
action.

To determine which action to invoke, the framework uses a routing table. The
Visual Studio project template for Web API creates a default route:

config.Routes.MapHttpRoute(
name:="DefaultApi",
routeTemplate:="api/{controller}/{id}",
defaults:=New With {.id = RouteParameter.Optional}

)

Each entry in the routing table contains a route template. The default route

template for Web API is "api/{controller}/{id}". In this template, "api" is a

literal path segment, and {controller} and {id} are placeholder variables.

When the Web API framework receives an HTTP request, it tries to match the

URI against one of the route templates in the routing table. If no route

matches, the client receives a 404 error. For example, the following URIs

match the default route:

/api/contacts

/api/contacts/1

/api/products/gizmo1

However, the following URI does not match, because it lacks the "api" segment:

/contacts/1

Once a matching route is found, Web API selects the controller and the action:

RBDMS Data Mining Configuration
Page 16 of 44

 To find the controller, Web API adds "Controller" to the value of the

{controller} variable.

 To find the action, Web API looks at the HTTP method, and then looks

for an action whose name begins with that HTTP method name. For

example, with a GET request, Web API looks for an action that starts

with "Get...", such as "GetContact" or "GetAllContacts". This convention

applies only to GET, POST, PUT, and DELETE methods. You can enable

other HTTP methods by using attributes on your controller.

 Other placeholder variables in the route template, such as {id}, are

mapped to action parameters.

In the following example we specify the Well controller as follows:

Public Class WellController
Inherits ApiController

Public Function GetAction(<FromUri> search As String) As
IEnumerable(Of SearchResultBase)

Return Well.Find(search)
End Function

Public Function PostAction(<FromBody> f As Filter) As
IEnumerable(Of SearchResultBase)

Return Well.FindAdvanced(f)
End Function

End Class

The GET requests to the /api/Well route is mapped to the GetAction method,

while the POST requests to /api/Well is mapped to the PostAction method.

We could also invoke more specific action methods such as /api/Well/id which

could be used to retrieve data for a specific item mapped to GetWell(id).

Full text (simple) search routing

In case of the full text (simple) search we map the search nodes to the

controller according to the following rule:

/api/[controller]/?search=[search]

where [contoller] is the controller name specified in searchNodes (like Well,

County, Pool etc.) and [search] is the text entered on the simple search tab.

When performing the search, we initiate the query for each node

simultaneously and the search tree is updated with the receive data

RBDMS Data Mining Configuration
Page 17 of 44

immediately. For more detailed information about the simple search refer to

the implementation of the search() JavaScript method.

Advanced search routing

In case of the advanced search we retrieve the filter configuration first, by

using the following route:

/api/Filter/?collName=DataMining

The controller returns a filter structure according to the model implemented in

Filter.vb, which is stored for later use.

Then we fill up an HTML table on the advanced search tab with the filter

controls and start retrieving the combo items using the Lookup controller using

the route:

/api/Lookup/?lookupName=[lookup name]

When performing the search, the filter structure is updated with the selected

values and then sent to the controller as a post data. The controller is specified

in the searchNodesAdvanced configuration and we use the following route:

/api/[controller]

Currently only the Well controller is configured to implement the advanced

search option.

Models in ASP.NET Web API

A model is an object that represents the data in our application. ASP.NET Web

API can automatically serialize the model to JSON, XML, or some other format,

and then write the serialized data into the body of the HTTP response message.

As long as a client can read the serialization format, it can deserialize the

object. Most clients can parse either XML or JSON. Moreover, the client can

indicate which format it wants by setting the Accept header in the HTTP

request message.

Controllers and Models implemented in DataMining 2.0

RBDMS Data Mining Configuration
Page 18 of 44

As we already mentioned the search functionality in DataMining 2.0 is

implemented by a set of controllers and the name of the controllers are

configured in the search nodes. In this chapter we discuss the implementation

of each controller in more detail.

CountyController

The CountyController is used in the simple search and the data is returned as a

County model (implemented in County.vb). The controller executes the

following database query to retrieve the search results from the database:

select distinct c.countyno , c.countyname from RefCounty c where

c.countyname like @Search

Where @Search is the specified query text on the simple search tab.

EntityController

The EnityController is used in the simple search and the data is returned as an

Entity model (implemented in Entity.vb). The controller executes the following

database query to retrieve the search results from the database:

select e.pkey , upper(coalesce(e.entityname,'')) + case

isnull(e.firstname, '') when '' then '' else ', ' + upper(e.firstname)

end from entity e inner join entityaddress ea on e.pkey=ea.entitykey

where ea.role='OGO' and upper(coalesce(e.entityname,'')) + case

isnull(e.firstname, '') when '' then '' else ', ' + upper(e.firstname)

end like @Search order by e.entityname

Where @Search is the specified query text on the simple search tab.

FieldController

The FieldController is used in the simple search and the data is returned as a

Field model (implemented in Field.vb). The controller executes the following

database query to retrieve the search results from the database:

select e.fieldnumber, e.fieldname from reffields e where e.fieldname

like @Search order by e.fieldname

RBDMS Data Mining Configuration
Page 19 of 44

Where @Search is the specified query text on the simple search tab.

FilterController

The FilterController returns a filter structure according to the model

implemented in Filter.vb. This structure is used to fill the table on the

advanced search tab with the filter controls.

Since we can maintain multiple filter collections in the database, when

invoking the GET action, we should also specify the collection to be used, and

the id of the collection is retrieved from the database as follows:

select top 1 collid from coll where collname=@CollName

Where @CollName is the specified collection name, currently @CollName =

'DataMining' is used.

The filter controls are retrieved by using the following query:

select cdc.seq, dc.* from devcontrols dc inner join colldevcontrols

cdc on dc.controlname=cdc.controlname where cdc.collid = @CollId order

by cdc.seq

When executing the advanced search, the filter structure is filled with the

selected parameters and the entire structure is passed to the controllers

specified in searchNodesAdvanced using POST requests. Currently only the

WellController implements the advanced search option.

GISConfigController

The GISConfigController is used to dispatch the GIS config data to the

JavaScript client. The state dependent location of the GIS Config file is

specified in application web.config file by using the GISConfigFile parameter.

The GIS config file is deserialized into the GIS model (implemented in GIS.vb)

and then the data is returned in JSONJSON format to the JavaScript client. The

controller is called from the setupConfig javascript function right before

initializing the OpenLayers map configuration. For more information about the

map configuration see Map Configuration and spatial queries.

RBDMS Data Mining Configuration
Page 20 of 44

LookupController

The LookupContoller is used to retrieve the data for the selection lists on the

advanced search tab. The following GET request is called for each list control

by specifying the control name as the parameter:

api/Lookup/?lookupName=[control name]

The SQL query of the selectable values for each control is retrieved from the

devcontrols table as:

select top 1 SQL, DisplayField, ValueField from devcontrols where

controlname=@LookupName

And then the retuned SQL query is executed and the results are returned to the

caller by using the Lookup model (implemented in Lookup.vb)

PermitController

The PermitController is used in the simple search and the data is returned as a

Permit model (implemented in Permit.vb). The controller executes the

following database query to retrieve the search results from the database:

select e.pkey, e.permit from permit e where e.permit like @Search order

by e.permit

Where @Search is the specified query text on the simple search tab.

PoolController

The PoolController is used in the simple search and the data is returned as a

Pool model (implemented in Pool.vb). The controller executes the following

database query to retrieve the search results from the database:

select e.poolnumber, e.poolname from refpool e where e.poolname like

@Search order by e.poolname

Where @Search is the specified query text on the simple search tab.

RBDMS Data Mining Configuration
Page 21 of 44

ReportTreeProviderController

The ReportTreeProviderController is a server component to provide data for

filling the report tree in the DataMining reporting page. We can store multiple

report configurations in the database and the current configuration is selected

according to the RbdmsProfileProviderApplicationName and

RbdmsSiteMapReportsMenuName specified in the web.config file, for example:

<appSettings>
<add key="RbdmsProfileProviderApplicationName"

value="MSRBDMS.NET"/>
<add key="RbdmsSiteMapReportsMenuName" value="ReportsDataMining"/>

</appSettings>

The current XML configuration for the report tree is selected using the

following database query:

SELECT Menus.XML FROM Menus INNER JOIN aspnet_Applications ON

Menus.ApplicationID = aspnet_Applications.ApplicationId WHERE

aspnet_Applications.LoweredApplicationName = LOWER(@ApplicationName)

AND Menus.MenuName = @MenuName

The retrieved XML is returned to the JavaScript client in JSONJSON format

which is used to fill the jstree on the reporting page. For more information

about the reporting configuration refer to Reporting configuration topic.

ReportProviderController

The ReportTreeProviderController provides the result for the selected report

on the DataMining reporting page. To retrieve the result of the selected report

a POST request is received which contains the name of the report in the

activeReport parameter and the selected filter configuration in the post data.

The controller supports the 2 type of the reports: the RDLCRDLC and the xml

reports, the filter collections and the reports hasn't been changed, so the

earlier reports will work just fine with the new user interface.

According to the report type the controller works differently. For the

RDLCRDLC reports the report definition is loaded from the /Reports

subdirectory of the application and the specified parameters are also

configured in the report definition which is store in a session variable

RBDMS Data Mining Configuration
Page 22 of 44

(RbdmsReportData). No data is returned to the client at this phase, the report

is displayed in a subsequent load of the WebReportRDLC.aspx page.

Conversely, for the XML reports the results are loaded directly from the

database and returned to the caller in JSON format

WellController

The WellController is used in both the simple and the advanced searches to

query well data from the database.

The GET action implements the query for the simple search, and the following

database query is executed:

select distinct w.pkey , w.wellid + ' ' + w.wellname, l.x, l.y from

Well w inner join construct c on w.pkey=c.wellkey inner join loc l on

c.pkey=l.constructkey and l.loctype='surf' where w.wellname like

@Search or w.wellid like @Search order by w.wellid + ' ' + w.wellname

For the advanced search the POST action is executed with the filter data

updated with the filter parameters selected on the advanced search tab.

The base sql query of the advanced search is updated by

Filter.GetParametrizedCommand which is a generic implementation to apply

the values specified in the Filter model.

With the retrieved data, the Well model (implemented in Well.vb) is filled and

then returned to the JavaScript client.

RBDMS Data Mining Configuration
Page 23 of 44

Map Configuration and spatial queries

In DataMining 2.0 we implement web mapping functionalities by using the
OpenLayers library. OpenLayers is an open source (provided under the 2-clause
BSD License) JavaScript library for displaying map data in web browsers. It
provides an API for building rich web-based geographic applications similar to
Google Maps and Bing Maps. The library was originally based on the Prototype
JavaScript Framework.

OpenLayers is capable to consume data from OGC compliant web mapping
services (like GeoServer in our case) and OpenLayers can handle the
corresponding WMS/WFS request for the configured layers automatically.

For convenience, the state independent parts if the web mapping
implementation is added to a common file (RBDMSGIS_HTML_OL.js) which can
be reused in multiple projects.

Map Configuration

The map configuration is specified in the GIS configuration file described
earlier in this document. The GIS configuration is returned to the JavaScript
client by using the GISConfigController.
The layers are created and added in the initMapConfig function. For each layer
entry in the GIS config file a New OpenLayers.Layer.WMS is created,
configured, and added to the map.
The visibility of the layers is set according to the Visible setting of the
GISTOCItem node. The layers for which the Active flag is specified are added as
queryable layers and also selected in the selection layers (multiselect listbox)
above the map
When the ToolTip entry is specified for a layer, we also configure an
OpenLayers GetFeature control which provides to execute the WFS query to
GeoServer when the cursor is moved to any position on the map. For more
information about the query controls refer to the Spatial queries and
OpenLayers controls chapter.

The map legend /TOC

The map legend or TOC displays a list of the layers added to the map
configuration. To implement the legend we use a customized version of the
LayerSwitcher extension of OpenLayers.

RBDMS Data Mining Configuration
Page 24 of 44

The legend can be shown by clicking on the button on the right side of the
map:

The legend supports setting the visibility, the opacity of the layers, changing
the layer order and displaying the legend image for each layer. The active
layers support the infoClick selection tool which can be activated by the info
button.

The legend /TOC also supports changing the base layer of the map. Only one
base layer can be displayed in the same time so switching between the base
layers can be done using a set of radio buttons:

RBDMS Data Mining Configuration
Page 25 of 44

Spatial queries and OpenLayers controls

The spatial query operations on the selectable layers (like point, rectangle or
polygon based selections) are implemented by a set of OpenLayers controls.
Most of the implementation is added to the common RBDMS code base (in
RBDMSGIS_HTML_OL.js). In most cases only one control should be active at the
same time, so each control is added to a central repository (singleUseTools
collection). We activate a specific control by calling the activateControl
function which automatically deactivates all other controls. If all controls are
deactivated (by calling setDefaultTool) OpenLayers will provide the default
option which allows panning the map. The controls used with the current
implementation are described in more detail in the following chapters.

Displaying the results of a spatial query

According to the state of the query the tree control on the search tab is
updated with the query results, which is done in the selectionCallback function
implemented in MSOGBOnline.html.

When the selection is starting the callback is called with the "selectionstart"
operation. In this case the selection tree is updated according to the search
configuration nodes as described earlier. For each search node, a new node is
added to the selection tree and the "querying..." text is displayed to show that
the query for the node is in progress.

When the selected features are returned from the server, the selection
callback is called with the "selected" operation. In his case the features are
added to the corresponding nodes as child elements and the "querying..." text
is replaced with the actual count of the features.

RBDMS Data Mining Configuration
Page 26 of 44

When clicking on a result node and a keyVal and Detail XML is specified in the
search configuration for that node, the EntityDeatils configuration is displayed
on the Details section. For more information about the Details configuration
see the Detail Configuration chapter later in this document. When the keyVal
and Detail XML are not specified, the feature attributes are displayed as a plain
table in the Details section.

To display the query results on the map we have configured a couple of overlay
layers (selectLayer, selectPolyLayer, bufferLayer etc.) on the top of the map,
which are not added to the legend/TOC.

Point selection tool

The point selection tool is implemented with an OpenLayers GetFeature control
(called as pointSelectControl) which provides a WFS query to the map server
with a specified click tolerance (currently configured as 7 pixels). When the
control is active it registers to the mouse click event, initiates a WFS query and
the selection callback is called when the results are received.

Rectangle selection tool

The rectangle selection tool is also implemented an OpenLayers GetFeature
control (called as wmsGetFeatureControl). The main difference in the
operation is that we configure a box selection and tracking the selection
rectangle is handled by OpenLayers accordingly.

Polygon selection tool

Implementing the polygon selection is somewhat different than the previous
tools. We need to set up a DrawFeature control (polySelectControl) to draw a
polygon on the map and register on the "featureadded" event which is called
when the drawing is complete. Then we need to configure and initiate the
query to retrieve all features which intersects with the search shape. The
query results are then displayed in the same way as for the previous tools.

Tooltip selection

The tooltip selection is configured along with the map layer configuration
described earlier. When the ToolTip entry is specified for a layer, we configure
an OpenLayers GetFeature control which works as a point selection tool with
single selection only. In this case we also set the hover option to initiate the

RBDMS Data Mining Configuration
Page 27 of 44

query if the cursor is move to a given position on the map. When we receive a
result of the query a popup is displayed on the map with the HTML contents
specified in the ToolTip element of the map configuration:

<ToolTip>
<![CDATA[
<table>
<tr>

<td>API</td>
<td><a href="javascript:window.parent.parent.FillEDOnly('PKey',!-

PKEY-
!,'Integer','WellDetails.xml','ctl00_PageBody_WebPartManager1_gwpPanelD
etails_DetailsFrame');">!-API-!</td>

</tr>
</table>

]]>
</ToolTip>

The attribute placeholders (like !-API-! or !-PKEY-!) are automatically
replaced with the actual values in the selected feature.

InfoClick selection tool

The layers which are configured as "Active" on the GIS config file will support
the infoClick selection tool. For these layers an info icon is displayed in the
layer switcher. Clicking on this button will automatically deactivate all
selection controls and activate the infoClick control for that layer according to
the following example:

layerSwitcherActiveLayer: function (layer) {
layer.setVisibility(true);
var control = ME.olMap.getControlsBy("id",

"infoClickControl")[0];
control.layers = new Array();
control.layers[0] = layer;
if ($.inArray(layer.name, ME.WFSCustomPopups) != -1) {

control.infoFormat = "application/JSON";
} else {

control.infoFormat = "text/html";
}

ME.activateControl("infoClickControl");
}

The infoClick control is an OpenLayers WMSGetFeatureInfo control, which
displays a popup with a feature attribute table for the returned query result.

RBDMS Data Mining Configuration
Page 28 of 44

Reporting configuration

The reporting option of DaraMining 2.0 is implemented in the reporting.html
page. The available reports are displayed in the Menu section which is filled by
calling the ReportTreeProvider controller.

The content of the tree is stored in XML files in the database, according to the
following example:

<?xml version="1.0" encoding="utf-8"?>
<mnuRBDMS>

<siteMapNode description="Home" Create="False" Read="False"
Update="False" Delete="False" rightid="0" rightname="Home"
url="~/WebReportAccordion.aspx" winform="Home.xaml">

<siteMapNode description="Well Data" Create="False" Read="False"
Update="False" Delete="False" rightid="0" rightname="Home"
url="~/WebReportAccordion.aspx?instance=1" winform="Home.xaml">

<siteMapNode description="Completion report" Create="False"
Read="True" Update="False" Delete="False" rightid="2002"
rightname="Completions" url="~/WebReportAccordion.aspx?ID=2002"
winform="Completions.RDLC" image="~/images/Report.png" />

<siteMapNode description="Scout Card report" Create="False"
Read="True" Update="False" Delete="False" rightid="2007"
rightname="Scout Cards" url="~/WebReportAccordion.aspx?ID=2007"
winform="Scout Cards.RDLC" image="~/images/Report.png" />

<siteMapNode description="Production GroupBy " Create="False"
Read="True" Update="False" Delete="False" rightid="300031"
rightname="ProductionGroup" url="~/Default.aspx"
winform="ProductionSummary.RDLC" image="~/images/Report.png" />

<siteMapNode description="Active Well Operators" Create="False"
Read="True" Update="False" Delete="False" rightid="2001"
rightname="Active Well Operators"

RBDMS Data Mining Configuration
Page 29 of 44

url="~/WebReportAccordion.aspx?ID=2001" winform="Active Well
Operators.xml" image="~/images/Table.png" />

<siteMapNode description="Well Log report" Create="False"
Read="True" Update="False" Delete="False" rightid="2010"
rightname="Well Log" url="~/WebReportAccordion.aspx?ID=2010"
winform="Well Log.RDLC" image="~/images/Report.png" />

<siteMapNode description="Ranking by Field Pool Report"
Create="False" Read="False" Update="False" Delete="False"
rightid="300204" rightname="ProdRankingByFieldPoolReport"
url="~/Default.aspx?instance=2" winform="RankBYFieldPool.RDLC"
image="~/images/Report.png" />

<siteMapNode description="Well Information report" Create="False"
Read="True" Update="False" Delete="False" rightid="2009"
rightname="Well Information" url="~/WebReportAccordion.aspx?ID=2009"
winform="WellInformation.RDLC" image="~/images/Table.png" />

</siteMapNode>
<siteMapNode description="Permit Data" Create="False" Read="False"

Update="False" Delete="False" rightid="0" rightname="Home"
url="~/WebReportAccordion.aspx?instance=3" winform="Home.xaml">

<siteMapNode description="Permit Information" Create="False"
Read="True" Update="False" Delete="False" rightid="2011"
rightname="Permit Information" url="~/WebReportAccordion.aspx?ID=2011"
winform="PermitInfo.xml" image="~/images/Table.png" />

<siteMapNode description="Permit and plug list" Create="False"
Read="True" Update="False" Delete="False" rightid="2004"
rightname="Permit and Plug List"
url="~/WebReportAccordion.aspx?ID=2004" winform="Permit and Plug
List.RDLC" image="~/images/Report.png" />

</siteMapNode>
</siteMapNode>

</mnuRBDMS>

However, the user should not manually edit the tree in the database, but use
RBDMS WinAdmin to modify this menu.

The application supports either the XML based reports or the RDLC reports
which are distinguished by 2 different tree icons.
When clicking on a report node, the filter section is opened and filled with the
controls supported by the selected report. The filter configuration is retrieved
by using the FilterController in exactly the same way as described for the
advanced search earlier.

When the Apply Filter button is clicked the filter structure is updated with the
actual selection and then a POST request is invoked to the
ReportProviderController passing the name of the active report and filter
structure as the post data.
When the report data is retrieved the Report section is opened to display the
result. If the returned report is an RDLC report, the report is displayed by
WebReportRDLC.aspx which hosts the ASP.NET reportviewer control.
The XML based reports are displayed directly by using the jqGrid control and
the conversion of the report data to CSV format is also supported in the Report
section.

RBDMS Data Mining Configuration
Page 30 of 44

An example of the XML report (PermitInfo.xml) is shown below:

<RBDMSReport>
<CollName>PermitInfo</CollName>
<Description>Well Permit Information</Description>
<sql>

SELECT /*DISTINCT*/ Permit, WellID, WellName, FieldName,
EntityName, CountyName, PermitTypeDescription,

convert(varchar(10), ApprovedDate, 101) as ApprovedDate, Depth
FROM rptPermit
WHERE Permit IS NOT NULL

</sql>
<Columns>PermitInfo<Column Name="Permit" Width="100" Caption="Permit

No." /><Column Name="WellID" Width="110" Caption="API No. (Surface)"
/><Column Name="WellName" Width="110" Caption="Well Name" /><Column
Name="FieldName" Width="100" Caption="Field" /><Column
Name="EntityName" Width="150" Caption="Operator" /><Column
Name="CountyName" Width="100" Caption="County" /><Column
Name="PermitTypeDescription" Width="120" Caption="Permit Type"
/><Column Name="ApprovedDate" Width="100" Caption="Date Approved"
/><Column Name="Depth" Width="90" Caption="Permit Depth" /></Columns>
</RBDMSReport>

In the XML report definition we specify the filter collection name, the report
name, select statement to be executed, and the column information (Name,
Width and Caption).

RBDMS Data Mining Configuration
Page 31 of 44

Detail Configuration

To display the information in the Details section we continue to use the
RBDMSWebControls.EntityDetails web control hosted by the ED.aspx page.
Detail configuration files are used to configure the
RBDMSWebControls.EntityDetails web control. The control facilitates
standardized, tabbed display of results for individual entities (e.g., wells,
permits, operators, etc.).

As other
RBDMS
configuration
files, the
details
configuration
file is a
serialized
object. The
EntityDetails
web control is
populated
with an EntityDetailsPersist object, which has two top-level objects:

 MainTab: Controls title (Well Information) and “always visible”
information (Well Name and Well Type).

 Subtabs: The collection of EntityDetailsItem controls.

<?xml version="1.0" encoding="utf-8"?>
<EntityDetailsPersist xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<MainTab>
</MainTab>
<Subtabs>

<!-- GENERAL -->
<EntityDetailsItem>
</EntityDetailsItem>

</Subtabs>
</EntityDetailsPersist>

Each tab (MainTab or EntityDetailsItem) has the following properties:

 Query: The object specifying the base sql for the tab and how the where
clause will be constructed.

o KeyNameAllowUpdate: Boolean (default = “false”). Can the
calling application change the key name?

RBDMS Data Mining Configuration
Page 32 of 44

o KeyName: The name of the key column.

o KeyValue: The value in the key column we want to display. The
KeyValue will always come from the calling application.

o KeyType: The data type of the key column.

o BaseQuery: The base SQL to which the constructed where clause
will be appended.

o OrderBy: The order by clause containing the text “order by.”

 RelatedTables: The collection of RelatedTable controls.

 ColumnsWide. The integer specifying how many fields per row are
rendered. For example, if there are seven fields selected in the SQL
statement and ColumnWide= “3,” then there will be 3 rows, the last
containing only one field.

 TableTitle. The title of the details page if in MainTab or the tab title
text if in EntityDetailsItem.

RelatedTable items are used to display lists of results (e.g., wells in field,
leases for an operator, etc.). Each RelatedTable has the following properties:

 Query: See Query under MainTab / EntityDetailsItem).
 Title: The title string.

See Appendix II: Details Samples for more information.

RBDMSWebGIS Configuration

The RBDMSWebGIS Configuration file is discussed in detail in the document
RBDMSWebGIS XML Configuration.

RBDMS Data Mining Configuration
Page 33 of 44

Appendix I: Styled Layer Descriptor (SLD) example

<?xml version="1.0" encoding="iso-8859-1"?>
<StyledLayerDescriptor version="1.0.0"
xsi:schemaLocation="http://www.opengis.net/sld

StyledLayerDescriptor.xsd"
xmlns="http://www.opengis.net/sld"
xmlns:ogc="http://www.opengis.net/ogc"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<NamedLayer>

<Name>Counties</Name>
<UserStyle>

<Title>Counties</Title>
<Abstract>SLD for Counties</Abstract>
<FeatureTypeStyle>

<!-- Rule 1: Show Counties all scales -->
<Rule>

<Name>Counties</Name>
<Title>Counties</Title>
<PolygonSymbolizer>

<!-- Fill>
<CssParameter

name="fill">#f7efde</CssParameter>
<CssParameter name="fill-

opacity">0.5</CssParameter>
</Fill -->

<Stroke>
<CssParameter name="stroke">#ad9e8c</CssParameter>
<CssParameter name="stroke-width">1</CssParameter>

</Stroke>
</PolygonSymbolizer>

</Rule>

<!-- Rule 2: Show Labels; scale 1 -->
<Rule>

<Name>Counties</Name>
<Title>Counties</Title>
<MaxScaleDenominator>7000000</MaxScaleDenominator>
<MinScaleDenominator>4000000</MinScaleDenominator>
<TextSymbolizer>

<Label>
<ogc:PropertyName>CONAME</ogc:PropertyName>

</Label>

<CssParameter name="font-family">Arial</CssParameter>
<CssParameter name="font-size">5</CssParameter>
<CssParameter name="font-weight">bold</CssParameter>

<!-- this centers the label on the polygon's centroid-->
<LabelPlacement>

RBDMS Data Mining Configuration
Page 34 of 44

<PointPlacement>
<AnchorPoint>

<AnchorPointX>
0.5

</AnchorPointX>
<AnchorPointY>

0.5
</AnchorPointY>

</AnchorPoint>
</PointPlacement>

</LabelPlacement>

<Fill>
<CssParameter name="fill">#848200</CssParameter>

</Fill>
</TextSymbolizer>

</Rule>

<!-- Rule 3: Show Labels; scale 2 -->
<Rule>

<Name>Counties</Name>
<Title>Counties</Title>
<MaxScaleDenominator>4000000</MaxScaleDenominator>
<MinScaleDenominator>847000</MinScaleDenominator>
<TextSymbolizer>

<Label>
<ogc:PropertyName>CONAME</ogc:PropertyName>

</Label>

<CssParameter name="font-family">Arial</CssParameter>
<CssParameter name="font-size">7</CssParameter>
<CssParameter name="font-weight">bold</CssParameter>

<!-- this centers the label on the polygon's centroid-->
<LabelPlacement>

<PointPlacement>
<AnchorPoint>

<AnchorPointX>
0.5

</AnchorPointX>
<AnchorPointY>

0.5
</AnchorPointY>

</AnchorPoint>
</PointPlacement>

</LabelPlacement>

<Fill>
<CssParameter name="fill">#848200</CssParameter>

</Fill>
</TextSymbolizer>

</Rule>

<!-- Rule 4: Show Labels; scale 3 -->
<Rule>

RBDMS Data Mining Configuration
Page 35 of 44

<Name>Counties</Name>
<Title>Counties</Title>
<MaxScaleDenominator>847000</MaxScaleDenominator>
<MinScaleDenominator>350000</MinScaleDenominator>
<TextSymbolizer>

<Label>
<ogc:PropertyName>CONAME</ogc:PropertyName>

</Label>

<CssParameter name="font-family">Arial</CssParameter>
<CssParameter name="font-size">10</CssParameter>
<CssParameter name="font-weight">bold</CssParameter>

<!-- this centers the label on the polygon's centroid-->
<LabelPlacement>

<PointPlacement>
<AnchorPoint>

<AnchorPointX>
0.5

</AnchorPointX>
<AnchorPointY>

0.5
</AnchorPointY>

</AnchorPoint>
</PointPlacement>

</LabelPlacement>

<Fill>
<CssParameter name="fill">#848200</CssParameter>

</Fill>
</TextSymbolizer>

</Rule>

</FeatureTypeStyle>
</UserStyle>

</NamedLayer>
</StyledLayerDescriptor>

RBDMS Data Mining Configuration
Page 36 of 44

Appendix II: Details Samples

Company:

<?xml version="1.0" encoding="utf-8"?>
<EntityDetailsPersist xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<MainTab>
<Query>

<KeyName>Cono</KeyName>
<KeyValue xsi:type="xsd:string">01000</KeyValue>
<KeyType>String</KeyType>
<BaseQuery>

<![CDATA[
select
[Company Name]=CoName
from tblRefCompany
]]>

</BaseQuery>
</Query>
<RelatedTables />
<Tabs />
<ColumnsWide>-1</ColumnsWide>
<TableTitle>Company Information</TableTitle>

</MainTab>
<Subtabs>

<!-- General -->
<EntityDetailsItem>

<Query>
<KeyName>CoNo</KeyName>
<KeyValue xsi:type="xsd:string">01000</KeyValue>
<KeyType>String</KeyType>
<BaseQuery>

<![CDATA[
select
[Address]=Addr1,
[Address2]=Addr2,
[City]=City,
[State]=State,
[Zip]=PostalCode,
[Phone]=Phone,
[Phone Ext]=PH_Ext,
[Fax]=fax
from tblRefCompany
]]>

</BaseQuery>
</Query>
<RelatedTables/>
<Tabs />
<ColumnsWide>2</ColumnsWide>
<TableTitle>General</TableTitle>

</EntityDetailsItem>
<!-- Company Wells -->

RBDMS Data Mining Configuration
Page 37 of 44

<EntityDetailsItem>
<Query>

<KeyName>Lease_Unit</KeyName>
<KeyValue xsi:type="xsd:string">01000</KeyValue>
<KeyType>String</KeyType>
<BaseQuery />

</Query>
<RelatedTables>

<RelatedTable>
<Query>

<KeyNameAllowUpdate>false</KeyNameAllowUpdate>
<KeyName>OpNo</KeyName>
<KeyValue xsi:type="xsd:string">01000</KeyValue>
<KeyType>String</KeyType>
<BaseQuery>

<![CDATA[
SELECT
[API WELL NO.] = '<a

href="javascript:parent.FillED(''API_WELLNO'',''' + API_WELLNO +
''',''STRING'',''WellDetails.xml'',''ctl00_PageBody_WebPartManager1_gwp
PanelDetails_DetailsFrame'');">' + API_WellNo + '',

[WELL NAME] = Well_Nm
from tblWellMaster
]]>

</BaseQuery>
<OrderBy>Well_Nm</OrderBy>

</Query>
</RelatedTable>

</RelatedTables>
<Tabs />
<ColumnsWide>-1</ColumnsWide>
<TableTitle>Company Wells</TableTitle>

</EntityDetailsItem>
</Subtabs>

</EntityDetailsPersist>

Wells (Basic):

<?xml version="1.0" encoding="utf-8"?>
<EntityDetailsPersist xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<MainTab>
<Query>

<KeyName>API_WELLNO</KeyName>
<KeyValue xsi:type="xsd:string">26001210010000</KeyValue>
<KeyType>String</KeyType>
<BaseQuery>

<![CDATA[
select

[Well Name] = Well_Nm,
[Well Type] = Well_Typ

from tblWellMaster
]]>

</BaseQuery>
</Query>
<RelatedTables />

RBDMS Data Mining Configuration
Page 38 of 44

<Tabs />
<ColumnsWide>-1</ColumnsWide>
<TableTitle>Well Information</TableTitle>

</MainTab>
<Subtabs>

<!-- GENERAL -->
<EntityDetailsItem>

<Query>
<KeyName>API_WELLNO</KeyName>
<KeyValue xsi:type="xsd:string">26001210010000</KeyValue>
<KeyType>String</KeyType>
<BaseQuery>

<![CDATA[
select

[API Well #] = API_WellNo,
[Lease Name] = Lease_Nm,
[Current Operator] = '<a

href="javascript:parent.FillED(''CoNo'',' + Cast(OpNo as varchar(25)) +
',''STRING'',''CompanyDetails.xml'',''ctl00_PageBody_WebPartManager1_gw
pPanelDetails_DetailsFrame'');">' + (select CoName from tblRefCompany
where CoNo=OpNo)+ '',

[Status Date]= Convert(char(10),Dt_Status,101),
[TVD]=TVD,
[DTD]=DTD
from tblWellMaster
]]>

</BaseQuery>
</Query>
<RelatedTables />
<Tabs />
<ColumnsWide>2</ColumnsWide>
<TableTitle>General</TableTitle>

</EntityDetailsItem>
</Subtabs>

</EntityDetailsPersist>

RBDMS Data Mining Configuration
Page 39 of 44

Appendix III. Using a WCF for Some or All Data Access

In 2010, two projects necessitated adding the ability to consume WCF services
from the Data Mining: Mississippi and Oklahoma. Mississippi's need arose from
the desire to serve images to the Internet from their Laserfiche Imaging
Service, which is only accessible from their internal network. Additionally,
access to the Laserfiche web service from the RBDMS.Net WPF application was
accomplished via a WCF service layer, and it made sense to reuse the service in
Data Mining. Oklahoma's need arose from their IT requirement that there be no
direct database access from any machine accessible from the Internet.

Though numerous modifications were made to the Data Mining to accommodate
the use of WCF services, it is fully backward-compatible and uses the same
configuration files for the Full Text Search and Details configurations.

The Data Mining application must have a service reference added to the
RbdmsWebControls project. The service reference name is used in the
configuration.

In version 2.0 of RBDMS Data Mining, the WCF configuration for details is still
applicable, but the filter and search capabilities would do not use the WCF by
default. Modifications can be made to any controller method to access the WCF
instead of making direct database queries as required.

Full Text Search Example

The only difference from the direct data access is in the SQL and SQLAdv
elements. The formatting of these elements when using a web service is as
follows:

 WebServiceCall|ServiceNamespace|ServiceReferenceName|MethodName
|QueryName

 WebServiceCall: Literally says to the Data Mining application that you
want it to get the data from a service (i.e., this is not SQL).

 ServiceNamespace: The namespace of the referenced service. This is
entered when you add the service reference.

 ServiceReferenceName: Typically the ServiceNamespace & “Client”

 MethodName: The name of the service method to be called (as defined
in the service contract).

 QueryName: The parameter to be passed to the service method.

RBDMS Data Mining Configuration
Page 40 of 44

<FullTextNode>
<Name>Wells</Name>
<FilterName />

<NavURL>javascript:window.parent.FillED('PKey',%NavUrl%,'Integer','WellDetails.xml','ctl00_Pag
eBody_WebPartManager1_gwpPanelDetails_DetailsFrame');</NavURL>

<?NavRootURL
>javascript:window.parent.FillReport('Filter=&Report=OperatorWells2000.rdl&Key=C
ompanies&Database=NOGCCOnline','ctl00_PageBody_WebPartManager1_gwpPanelDetails_
DetailsFrame');</NavRootURL?>

<Sql>

<![CDATA[WebServiceCall|DataMiningService|DataMiningServiceClient|FindQuery|Wells]]>
</Sql>
<SqlAdv>

<![CDATA[WebServiceCall|DataMiningService|DataMiningServiceClient|AdvancedQuery|Wells]]>
</SqlAdv>
<KeyName>w.PKey</KeyName>
<KeyType>Integer</KeyType>
<SearchType>FullText</SearchType>
<ThemeColumn></ThemeColumn>
<ThemeItems>

<FullTextThemeItem>
<Value>*</Value>
<Image>~/images/Ref1.gif</Image>

</FullTextThemeItem>
</ThemeItems>

</FullTextNode>

Details Example

In the same way that the Full Text example only modifies the SQL and SQLAdv
elements, the Details.xml file is only altered in the baseQuery elements. The
formatting of these elements when using a web service is the same as the Full
Text search, as follows:

 WebServiceCall|ServiceNamespace|ServiceReferenceName|MethodName
|QueryName

 WebServiceCall: Literally says to the Data Mining application that you
want it to get the data from a service (i.e. this isn't SQL).

 ServiceNamespace: The namespace of the referenced service. This is
entered when you add the service reference.

 ServiceReferenceName: Typically the ServiceNamespace & “Client.”

RBDMS Data Mining Configuration
Page 41 of 44

 MethodName: The name of the service method to be called (as defined
in the service contract).

 QueryName: The parameter to be passed to the service method.

<?xml version="1.0" encoding="utf-8"?>
<EntityDetailsPersist xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<MainTab>
<Query>

<KeyName>PKey</KeyName>
<KeyValue xsi:type="xsd:integer">1</KeyValue>
<KeyType>Integer</KeyType>
<BaseQuery>

<![CDATA[WebServiceCall|DataMiningService|DataMiningServiceClient|DataMiningQuery|EntityI
nformation]]>

</BaseQuery>
</Query>
<RelatedTables />
<Tabs />
<ColumnsWide>-1</ColumnsWide>
<TableTitle>Entity Information</TableTitle>

</MainTab>
<Subtabs>

<!-- General -->
<EntityDetailsItem>

<Query>
<KeyName>EntityKey</KeyName>
<KeyNameAllowUpdate>false</KeyNameAllowUpdate>
<KeyValue xsi:type="xsd:integer">1</KeyValue>
<KeyType>Integer</KeyType>
<BaseQuery>

<![CDATA[WebServiceCall|DataMiningService|DataMiningServiceClient|DataMiningQuery|Entity
General]]>

</BaseQuery>
</Query>
<RelatedTables>

<RelatedTable>
<Query>

<KeyNameAllowUpdate>false</KeyNameAllowUpdate>
<KeyName>EntityKey</KeyName>
<KeyValue xsi:type="xsd:integer">1</KeyValue>
<KeyType>Integer</KeyType>
<BaseQuery>

<![CDATA[WebServiceCall|DataMiningService|DataMiningServiceClient|DataMiningQuery|Entity
Communication]]>

</BaseQuery>
</Query>
<Title>Communication</Title>

</RelatedTable>

RBDMS Data Mining Configuration
Page 42 of 44

</RelatedTables>
<Tabs />
<ColumnsWide>2</ColumnsWide>
<TableTitle>General</TableTitle>

</EntityDetailsItem>
<!-- Entity Wells -->
<EntityDetailsItem>

<Query>
<KeyName>EntityKey</KeyName>
<KeyNameAllowUpdate>false</KeyNameAllowUpdate>
<KeyValue xsi:type="xsd:integer">1</KeyValue>
<KeyType>Integer</KeyType>
<BaseQuery />

</Query>
<RelatedTables>

<RelatedTable>
<Query>

<KeyNameAllowUpdate>false</KeyNameAllowUpdate>
<KeyName>Operator</KeyName>
<KeyValue xsi:type="xsd:integer">1</KeyValue>
<KeyType>Integer</KeyType>
<BaseQuery>

<![CDATA[WebServiceCall|DataMiningService|DataMiningServiceClient|DataMiningQuery|Entity
Wells]]>

</BaseQuery>
</Query>

</RelatedTable>
</RelatedTables>
<Tabs />
<ColumnsWide>2</ColumnsWide>
<TableTitle>Wells</TableTitle>

</EntityDetailsItem>
</Subtabs>

</EntityDetailsPersist>

Data Mining WCF Service Contract

<ServiceContract()> _
Public Interface IDataMiningService

<OperationContract()> _
Function DataMiningQuery(ByVal tokenID As Guid, ByVal name As String, ByVal keys() As

KeyData) As System.Data.DataSet

<OperationContract()> _
Function FindQuery(ByVal tokenID As Guid, ByVal name As String, ByVal keys() As KeyData)

As System.Data.DataSet

<OperationContract()> _

RBDMS Data Mining Configuration
Page 43 of 44

Function AdvancedQuery(ByVal tokenID As Guid, ByVal name As String, ByVal where As
String) As System.Data.DataSet

<OperationContract()> _
Function GetLookup(ByVal tokenID As Guid, ByVal name As String) As KeyData()

End Interface

KeyData Class Definition (as used in IDataMiningService)

Public Class KeyData
<DataMember()> _
Public KeyName As String
<DataMember()> _
Public KeyType As String
<DataMember()> _
Public KeyValue As Object

End Class

Coding the WCF Service

Though the inner workings of the service are immaterial to the Data Mining
client (i.e., the ASP.NET website), some discussion of the way the service was
implemented for Oklahoma is warranted. Basically, we moved the xml
configuration files from the client to the server, so now the server has the SQL
statements and direct connections to the database. The App_Data folder of
the service contains a StateSpecific folder:

 Nodes.xml
 DetailsXML (folder)

◦ EntityDetails.xml
◦ WellDetails.xml
◦ etc...

Several helper classes are included to assist in locating the correct section in
the configuration files to pull the SQL from. The results of the SQL are then
formatted and returned to the client as a DataSet with a single Table to be
used by the caller.

For a full text or advanced query, the rule is that the QueryName (e.g., Wells)
must match the FullTextNode.Name value in the Nodes.xml. In the current
implementation, the “full text search” is actually performed with LINQ-to-SQL
queries as opposed to full text indexing. Therefore, any SQL present in the
<Sql> element of the Nodes.xml is only used as a fallback for advanced queries
when the <SqlAdv> element is not present.

RBDMS Data Mining Configuration
Page 44 of 44

For a details type query, the rule is that the QueryName (e.g.,
EntityInformation) must match the Title or TableTitle value in the Details.xml.

